Bayes' Theorem

Example

- Three jars contain colored balls as described in the table below.
 - □ One jar is chosen at random and a ball is selected. If the ball is red, what is the probability that it came from the 2nd jar?

Jar#	Red	White	Blue
1	3	4	1
2	1	2	3
3	4	3	2

Example

- We will define the following events:
 - $\Box J_1$ is the event that *first* jar is chosen
 - $\Box J_2$ is the event that *second* jar is chosen
 - $\Box J_3$ is the event that *third* jar is chosen
 - □ R is the event that a red ball is selected

M

Example

- The events J_1 , J_2 , and J_3 mutually exclusive
 - □Why?
 - You can't chose two different jars at the same time
- Because of this, our sample space has been divided or *partitioned* along these three events

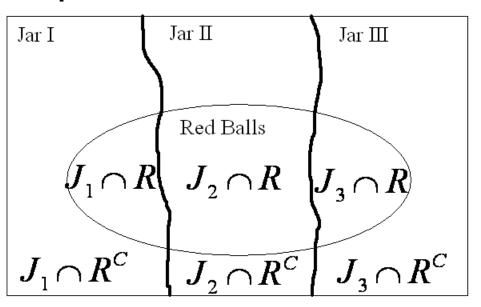
Venn Diagram

Let's look at the Venn Diagram

Jar II
$$P(J_1) = \frac{1}{3} \quad P(J_2) = \frac{1}{3} \quad P(J_3) = \frac{1}{3}$$

Venn Diagram

All of the red balls are in the first, second, and third jar so their set overlaps all three sets of our partition



v

Finding Probabilities

- What are the probabilities for each of the events in our sample space?
- How do we find them?

$$P(A \cap B) = P(A \mid B)P(B)$$

Computing Probabilities

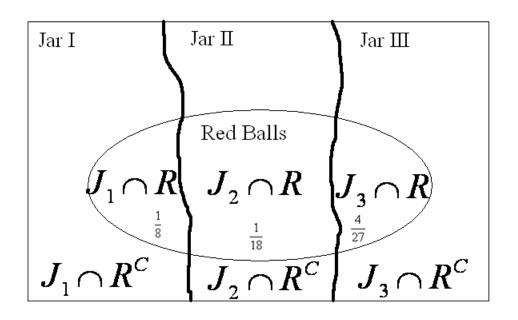
$$P(J_1 \cap R) = P(R \mid J_1)P(J_1) = \frac{3}{8} \cdot \frac{1}{3} = \frac{1}{8}$$

Similar calculations show:

$$P(J_2 \cap R) = P(R \mid J_2)P(J_2) = \frac{1}{6} \cdot \frac{1}{3} = \frac{1}{18}$$
$$P(J_3 \cap R) = P(R \mid J_3)P(J_3) = \frac{4}{9} \cdot \frac{1}{3} = \frac{4}{27}$$

Venn Diagram

Updating our Venn Diagram with these probabilities:



м

Where are we going with this?

- Our original problem was:
 - □ One jar is chosen at random and a ball is selected. If the ball is red, what is the probability that it came from the 2nd jar?
- In terms of the events we've defined we want:

$$P(J_2 \mid R) = \frac{P(J_2 \cap R)}{P(R)}$$

Finding our Probability

- We already know what the numerator portion is from our Venn Diagram
- What is the denominator portion?

$$P(J_2 \mid R) = \frac{P(J_2 \cap R)}{P(R)}$$

$$= \frac{P(J_2 \cap R)}{P(J_1 \cap R) + P(J_2 \cap R) + P(J_3 \cap R)}$$

Arithmetic!

Plugging in the appropriate values:

$$P(J_{2} | R) = \frac{P(J_{2} \cap R)}{P(J_{1} \cap R) + P(J_{2} \cap R) + P(J_{3} \cap R)}$$

$$= \frac{\left(\frac{1}{18}\right)}{\left(\frac{1}{8}\right) + \left(\frac{1}{18}\right) + \left(\frac{4}{27}\right)} = \frac{12}{71} \approx 0.17$$

м

Another Example—Tree Diagrams

All tractors made by a company are produced on one of three assembly lines, named Red, White, and Blue. The chances that a tractor will not start when it rolls off of a line are 6%, 11%, and 8% for lines Red, White, and Blue, respectively. 48% of the company's tractors are made on the Red line and 31% are made on the Blue line. What fraction of the company's tractors do not start when they roll off of an assembly line?

Define Events

- Let R be the event that the tractor was made by the red company
- Let W be the event that the tractor was made by the white company
- Let B be the event that the tractor was made by the blue company
- Let *D* be the event that the tractor won't start

Extracting the Information

In terms of probabilities for the events we've defined, this what we know:

$$P(R) = 0.48$$

 $P(W) = 0.21$
 $P(B) = 0.31$
 $P(D|R) = 0.06$
 $P(D|W) = 0.11$
 $P(D|B) = 0.08$

м

What are we trying to find?

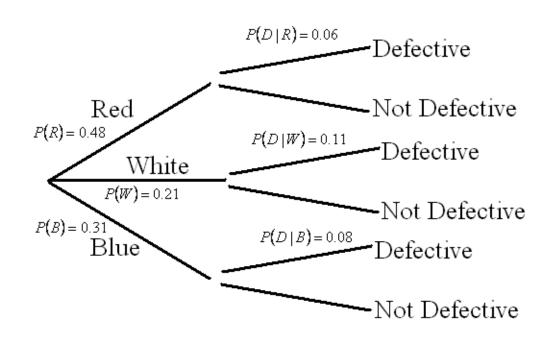
- Our problem asked for us to find:
 - □ The fraction of the company's tractors that do not start when rolled off the assembly line?
 - ☐ In other words:

P(D)

Tree Diagram

Because there are three companies producing tractors we will divide or partition our sample space along those events only this time we'll be using a tree diagram

Tree Diagram



Follow the Branch?

- There are three ways for a tractor to be defective:
 - It was made by the Red Company
 - It was made by the White Company
 - It was made by the Blue Company

- To find all the defective ones, we need to know how many were:
 - Defective and made by the Red Company?
 - Defective and made by the White Company?
 - □ Defective and made by the Blue Company?

The Path Less Traveled?

■ In terms of probabilities, we want:

$$P(R \cap D)$$
 $P(W \cap D)$
 $P(B \cap D)$

Computing Probabilities

- To find each of these probabilities we simply need to multiply the probabilities along each branch
- Doing this we find

$$P(R \cap D) = P(D \mid R)P(R)$$

$$P(W \cap D) = P(D \mid W)P(W)$$

$$P(B \cap D) = P(D \mid B)P(B)$$

×

Putting It All Together

Because each of these events represents an instance where a tractor is defective to find the total probability that a tractor is defective, we simply add up all our probabilities:

$$P(D) = P(D | R)P(R) + P(D | W)P(W) + P(D | B)P(B)$$

м

Bonus Question:

What is the probability that a tractor came from the red company given that it was defective?

$$P(R \mid D) = \frac{P(R \cap D)}{P(D)}$$

m

I thought this was called Bayes' Theorem?

- Bayes' Theorem
- Suppose that B_1 , B_2 , B_3 ,..., B_n partition the outcomes of an experiment and that A is another event. For any number, k, with $1 \le k \le n$, we have the formula:

$$P(B_k | A) = \frac{P(A | B_k) \cdot P(B_k)}{\sum_{i=1}^{n} P(A | B_i) \cdot P(B_i)}$$

٠.

In English Please?

- What does Bayes' Formula helps to find?
 - □ Helps us to find:

$$P(B \mid A)$$

■ By having already known: